TRITERPENE GLYCOSIDES FROM Astragalus AND THEIR GENINS. XC. ASKENDOSIDE K FROM Astragalus taschkendicus

I. M. Isaev and M. I. Isaev*

UDC 547.918:547.926

A new triterpene cycloartane glycoside called askendoside K was isolated from roots of Astragalus taschkendicus Bunge (Leguminosae). The structure of this glycoside was established using chemical and biochemical transformations and spectral data. Askendoside K was a bisdesmoside of cycloorbigenin C and had the structure 23R,24R-cycloartan-3 β ,6 α ,16 β ,23,24,25-hexaol 3-O-[(α -L-arabinopyranosyl)(1 \rightarrow 2)- β -D-xylopyranoside],23-O-[(β -D-glucuronopyranosyl)(1 \rightarrow 2)- β -D-glucopyranoside].

Keywords: *Astragalus taschkendicus*, Leguminosae, triterpene glycosides, askendoside K, cycloorbigenin C, PMR, ¹³C NMR, DEPT, COSY, Hetcor, and NOE spectra.

In continuation of research on polar triterpene glycosides from *Astragalus taschkendicus* Bunge (Leguminosae) [1], we isolated one more new glycoside from roots of this plant and called it askendoside K (1). Herein we report the structure determination of this glycoside.

The PMR spectrum of **1** (Table 1) exhibited at strong field 1H doublets for an AX system at δ 0.06 and 0.35 that belonged to the isopropane methylene of a cyclopropane ring in addition to resonances for seven methyls. As expected, the ¹³C NMR spectrum of this same glycoside showed resonances at δ 21.12, 29.03, and 30.23 for quaternary C-9 and C-10 and methylene C-19 composing the three-membered ring, indicating that the studied glycoside was a cycloartane triterpenoid [2–5].

S. Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences, Republic of Uzbekistan, Tashkent, fax (99871) 120 64 75, e-mail: m_isaev@rambler.ru. Translated from Khimiya Prirodnykh Soedinenii, No. 4, July–August, 2011, pp. 520–524. Original article submitted December 28, 2010.

In fact, acid hydrolysis of 1 produced the genin, which was identified as cycloorbigenin C (2) [6, 7]. Paper chromatography (PC) of the products in the carbohydrate part of the acid hydrolysate in the presence of authentic samples and taking into account biogenetic considerations detected D-xylose, D-glucose, D-glucuronic acid, and L-arabinose. The observance of four sets of resonances for monosaccharide units in the PMR and ¹³C NMR spectra of 1 indicated that these monosaccharides occurred in this glycoside in a 1:1:1:1 ratio and that 1 was a tetraoside.

Stepwise acid hydrolysis of 1 isolated progenins 3-5 in addition to cycloorbigenin C. Progenin 3 was identical to cycloorbicoside D according to PMR and 13 C NMR spectra and direct comparison with an authentic sample [7–9].

Comparison of 13 C NMR spectra of 1, cycloorbigenin C, and progenins 3–5 suggested that 1 was a bisdesmoside glycoside, the glycosylation centers of which were C-3 and C-23. The production of cycloorbicoside D as a progenin defined the location of the D-xylose as C-3, thereby confirming the conclusion that C-3 was one of the glycosylation centers.

As expected, a negative Overhauser effect on the H-3 resonance (δ 3.44) was observed in a difference PMR spectrum for measuring the nuclear Overhauser effect (NOE) upon pre-irradiation of the D-xylose anomeric proton of **1** (δ 4.79) [10, 11].

A comparison of the ¹³C NMR spectra of 1 and cycloorbicoside D indicated that the D-xylose in 1 was not terminal. The C-1 resonance of the D-xylose in the ¹³C NMR spectrum of 1 underwent a strong-field shift to δ 105.45; the C-2 resonance, a weak-field shift to δ 84.37 compared with the resonances of cycloorbicoside D. This meant that D-xylose C-2 was glycosylated in 1.

Progenin 4 contained D-glucose and D-glucuronic acid. This provided evidence that the L-arabinose was located on C-2 of the D-xylose. Therefore, the carbohydrate chain of 1 that was situated on C-3 consisted of pentoses whereas that on C-23, hexoses. In fact, the difference PMR spectrum for measuring the NOE from irradiation of the L-arabinose anomeric proton in 1 (δ 5.07) exhibited an Overhauser effect on the D-xylose H-2 resonance (δ 4.00). The spin–spin coupling constant (SSCC) of the L-arabinose anomeric proton (${}^{3}J = 6.7 \text{ Hz}$) defined the pyranose form, the ${}^{4}C_{1}$ -conformation, and the α -configuration of this monosaccharide in 1. This meant that the carbohydrate chain on C-3 had the structure (α -L-arabinopyranosyl)(1 \rightarrow 2)- β -D-xylopyranose.

Experiments on measurement of the NOE were conducted in order to find the structure of the carbohydrate chain on C-23. Irradiation of H-23 (δ 4.74) in **1** exhibited a NOE in the PMR spectrum on the resonance of the D-glucose anomeric proton (δ 5.25). Consistent with this, irradiation of the D-glucose anomeric proton produced in the PMR spectrum a NOE on the H-23 resonance. Therefore, the D-glucose was bonded directly to C-23 and the D-glucuronic acid was the terminal monosaccharide. The SSCC of the D-glucose anomeric proton ($^{3}J = 7.4$) defined the pyranose form, the $^{4}C_{1}$ -conformation, and the β -configuration of this hexose. This conclusion and structure for the carbohydrate chain on C-23 was confirmed by the production of askendoside H (**6**) from **1** as a result of enzymatic hydrolysis of the latter. Enzymatic hydrolysis of **1** by β -D-glucuronidase produced **6**, which was identified as askendoside H [1] based on PMR and ^{13}C NMR spectral data and direct comparison with an authentic sample.

The site of attachment of the D-glucuronic acid was found by comparing ¹³C NMR spectra of askendosides H and K. The resonance of the D-glucose anomeric C atom in the ¹³C NMR spectrum of **1** underwent a strong-field shift to δ 101.80; that of C-2, a weak-field shift to δ 81.72 compared with those resonances in askendoside H. This indicated unambiguously that D-glucose C-2 was glycosylated. Therefore, the D-glucuronic acid was bonded to C-2 of the D-glucose. This was confirmed by the difference PMR spectrum of **1** taken upon irradiation of the D-glucuronic acid anomeric proton (δ 5.61), where a NOE was observed on the H-2 resonance of D-glucose (δ 4.14).

The SSCC of the D-glucuronic acid anomeric proton (${}^{3}J = 7.5$) defined its pyranose form, ${}^{4}C_{1}$ -configuration, and β -configuration.

As already noted, progenin 4 was a bioside that contained D-glucose and D-glucuronic acid and should have had the structure 23R,24R-cycloartan- $3\beta,6\alpha,16\beta,23,24,25$ -hexaol 23-O-[(β -D-glucuronopyranosyl)(1 \rightarrow 2)- β -D-glucopyranoside]. This was in full agreement with the PMR and ¹³C NMR spectra.

Progenin 5 was a triose and contained D-xylose, D-glucose, and D-glucuronic acid. The PMR spectrum of 5 showed a resonance for a methoxyl at δ 3.67. This was consistent with the ¹³C NMR spectrum of this glycoside that exhibited a resonance for a methoxyl C atom at δ 51.99. The chemical shift of the methoxyl resonance in the PMR spectrum indicated that this group originated from an ester. A strong-field shift of the D-glucuronic acid carbonyl resonance to δ 170.29 was also indicative of this. This meant that the D-glucuronic acid carboxylic acid was methylated. This occurred during methanolysis. Glycoside 5 was 23R, 24R-cycloartan- $3\beta, 6\alpha, 16\beta, 23, 24, 25$ -hexaol $3-O-\beta$ -D-xylopyranoside, $23-O-[(\beta-D-(6-O-Me)-glucoronopyranosyl(1\rightarrow 2)]-\beta$ -D-glucopyranoside].

			1	2	3	4	5	6
C atom	DEPT	$\delta_{\rm C}$	δ _Η	$\delta_{\rm C}$	δ _C	δ _C	δ _C	δ _C
1	СЦ	37 37		32 74	32 12	32 74	32.45	22 52
1	CH_2	29.66		32.74	29.42 29.80	32.74	32.43	32.33 29.78
3	CH CH	88.43	3 44 dd (11 6 4 4)	78 30	88.66	78 48	88.69	88 55
4	C	42.61		42.42	42.67	42.43	42.62	42.76
5	СН	53.93	1.57 d (9.2)	53.91	54.00	53.87	54.04	54.10
6	СН	67.00	3.56 td (9, 3.9)	68.16	67.77	68.26	68.01	67.89
7	CH	38.14		38.54	38.32	38.46	38.37	38.31
8	ĊH	46.63^{a}	1.70 dd (11.9, 4.8)	47.06	46.82	47.05	47.01	46.82
9	C	21.12		21.18	21.25	21.08	21.24	20.51
10	C	29.03	_	29.51	29.13	29.47	29.20	29.20
11	CH_2	26.17		26.24	26.16	26.22	26.19	26.29
12	CH_2	33.07		32.92	32.86	33.09	33.10	33.14
13	Ċ	45.75	_	45.59	45.56	45.72	45.73	45.84
14	С	46.63 ^a	_	46.78	46.74	46.67	46.68	46.78
15	CH_2	48.13	1.51, 1.91	47.66	47.56	48.00	48.06	47.88
16	СН	71.76 ^b	4.54 td (7.6, 4.8)	72.08	72.05	71.71	71.70^{a}	72.17
17	СН	57.60	1.62 dd (10.8, 7.5)	57.37	57.31	57.85	57.92	57.47
18	CH_3	19.08	1.25 s	18.85	18.70	18.94	18.95	19.66
19	CH_2	30.23	0.06 и 0.35 d (4)	30.24	30.33	30.30	30.10	30.34
20	СН	27.39	2.55 m	27.29	27.27	27.73	28.20	27.60
21	CH_3	18.72.	1.14 d (6.4)	20.27	20.24	19.16	19.21	18.85
22	CH_2	37.78	2.62 dd (14.8, 9.9)	42.88	42.85	38.09	37.99	39.02
23	СН	79.39	4.74 dt (9.2, 2.8)	73.10	73.08	79.02	78.38*	82.79
24	СН	80.10	4.42 d (4)	79.03	79.01	79.87	/9.03*	80.64
25	C	72.63	-	74.29	74.29	72.88	72.92	72.68
26	CH ₃	26.50	1.50 s	24.56	24.54	26.46	26.47	26.45
27	CH ₃	28.20	1.54 \$	28.93	28.91	28.19	27.95	28.35
28	CH ₃	19.95	0.798	20.13	20.05	20.11	20.13	20.12
29	CH	26.51	1.82 S	29.31	28.80	29.28	20.01	28.01
$\beta 0 = 0.13 = 10.10 = 1.275 = 10.14 = 10.03 = 10.09 = 10.03 = 10.27$								
1	СН	105.45	μ -D-Ay	<i>p</i> unit	107.62		107 47	105 58
2	СН	83 47	4 00 dd (9 7)		75.61		75 50 ^b	83 53
3	СН	77.39	4.07		78.52		78.22	77.59
4	СН	70.86	4.06		71.21		71.16	71.02
5	CH ₂	67.78	3.50 dd (11, 9), 4.16		67.04		66.91	66.98
	-		α-L-Ara	<i>p</i> unit				
1	СН	106.57	5.07 d (6.7)					106.57
2	СН	73.59	4.45					73.63
3	CH	74.15	4.10					74.33
4	CH	69.08	4.21 td (3.1, 1.8)					69.13
5	CH_2	66.42	3.69 dd (12.3, 1.9)					66.58
			4.27 dd (12.3, 3.2)	•				
	CII	101.00	β-D-Glc	<i>p</i> unit		101.22	00.40	106 (2
1	CH	101.80	5.25 d (7.4)			101.33	99.49	106.63
2	СН	81.72	4.14			82.35	83.09	75.90
3	СН	70.22 71.76 ^b	4.10 3 80 dd (0 8 7 7)			78.30	77.91	70.23
- - -	СН	78 50	3.85 m			77 71	77.47	78.25
6	CH	62.67	4 10 4 43			62.72	62 70	63.18
Ū		02.07	B-D-GlcU	JA unit		02.72	02.70	05.10
1	СН	104.94	5.61 d (7.5)			105.15	106.04	
2	CH	75.25	4.14			75.41	75.50 ^b	
3	CH	77.70	4.16			78.23	78.14	
4	CH	73.13	4.36			73.21	72.81	
5	CH	76.95	4.40			77.29	77.38	
6	С	173.54	—			173.00	170.29	
CH ₃ O	CH_3	-	_			-	51.99	

TABLE 1. Chemical Shifts of C and H Atoms in Askendoside K (1), Parameters of Its 2D ${}^{1}H{}^{-1}H$ COSY and Hetcor NMR Spectra, Chemical Shifts of C Atoms in 2–5, DEPT Data for All Compounds (δ , ppm, J/Hz, C₅D₅N, 0 = TMS for δ_{C} , 0 = HMDS for δ_{H})

Chemical shifts of protons given without multiplicities and SSCC were found using 2D spectra. Resonances marked by the same letter were overlapped; by an asterisk, ambiguous.

Thus, the new triterpene cycloartane glycoside askendoside K (1) was 23R,24R-cycloartan- $3\beta,6\alpha,16\beta,23,24,25$ -hexaol $3-O-[(\alpha-L-arabinopyranosyl)(1\rightarrow 2)-\beta$ -D-xylopyranoside], $23-O-[(\beta-D-glucuronopyranosyl)(1\rightarrow 2)-\beta$ -D-glucopyranoside].

EXPERIMENTAL

General comments have been published [12]. The following solvent systems were used: $CHCl_3$:MeOH:H₂O (65:35:7, 1); $CHCl_3$:MeOH (10:1, 2); *n*-BuOH:Py:H₂O (6:4:3, 3); $CHCl_3$:MeOH:H₂O (70:12:1, 4); 70:25:4, 5). PMR and ¹³C NMR spectra were obtained on UNITYplus 400 (Varian) and DRX-500 (Bruker) spectrometers from Py-d₅ solutions of the compounds. Data for spectra of **1** that were obtained with added trifluoroacetic acid are also given. ¹³C NMR spectra were recorded with full C–H decoupling and under DEPT conditions. 2D spectra of **1** were taken using standard Varian programs. Chemical shifts of protons are given versus HMDS; of C atoms, relative to the resonance of the β -C atoms of Py-d₅ (δ 123.493 vs. TMS).

Isolation and separation of triterpenoids from *Astragalus taschkendicus* **Bunge** were reported [13–15]. Fractions eluted after askendoside H and several more polar glycosides that contained askendoside K (1) were combined and rechromatographed over a column using system 1 to isolate 1 (1.5 g, 0.0285% of air-dried raw material).

Askendoside K (1), $C_{52}H_{86}O_{25}$, white non-crystalline powder. Table 1 lists the PMR and ¹³C NMR spectra.

Cycloorbigenin C (2) from 1. Compound **1** (300 mg) was hydrolyzed by methanolic H_2SO_4 (30 mL, 0.5%) on a boiling-water bath for 6 h. The mixture was diluted with H_2O . The MeOH was evaporated. The resulting solid was filtered off, washed with H_2O , and dried. The dry solid was chromatographed over a column of silica gel with elution by system 2 to afford genin **2** (120 mg), $C_{30}H_{52}O_6$, mp 256–258°C (MeOH), which was identified as cycloorbigenin C [6, 7].

PMR spectrum of cycloorbigenin C (400 MHz, C_5D_5N , δ , ppm, J/Hz, 0 = HMDS): 0.19 and 0.47 (d, ²J = 4, 2H-19), 0.90 (s, CH₃), 1.08 (d, ³J = 6.4, CH₃-21), 1.26, 1.27, 1.57, 1.61, 1.79 (s, 5 × CH₃), 3.56 (dd, ³J₁ = 11.5, ³J₂ = 4.7, H-3), 3.65 (d, ³J = 8.5, H-24), 3.70 (td, ³J₁ = ³J₂ = 9.4, ³J₃ = 3.8, H-6), 4.22 (td, ³J₁ = ³J₂ = 8.7, ³J₃ = 2, H-23), 4.59 (td, ³J₁ = ³J₂ = 7.8, ³J₃ = 4.9, H-16). Table 1 lists the ¹³C NMR spectrum of cycloorbigenin C.

The filtrate was evaporated to a small volume and heated on a water bath for 1 h to destroy methylglycosides. The solution was cooled and neutralized with $BaCO_3$. A precipitate formed. The aqueous solution was concentrated and analyzed by PC using system 3 and comparison with authentic samples. PC detected D-glucose, D-xylose, D-glucuronic acid, and L-arabinose. PMR and ¹³C NMR spectra of 1 showed that these monosaccharides were present in the glycoside in a 1:1:1:1 ratio.

Partial Hydrolysis of 1. Compound **1** (500 mg) was hydrolyzed by methanolic H_2SO_4 (50 mL, 0.25%) for 8 h at 40°C. The mixture was diluted with H_2O . The MeOH was evaporated. The aqueous solution was treated with *n*-BuOH. The BuOH extract was washed with H_2O and evaporated to dryness. The dry solid was chromatographed over a column with elution by system 2 to afford **2** (90 mg), which was identified as cycloorbigenin C by direct comparison and PMR spectral data.

Further elution of the column by system 4 produced progenin **3** (27 mg). Continued elution of the column by system 5 gave progenin **4** (35 mg). Further elution of the column by the same solvent system isolated progenin **5** (30 mg).

23*R*,24*R*-Cycloartan-3 β ,6 α ,16 β ,23,24,25-hexaol 3-*O*- β -D-Xylopyranoside or Cycloorbicoside D (3) from 1. Progenin 3, C₃₅H₆₀O₁₀, mp 285–287°C (MeOH), [α]_D²⁸ 0 ± 3° (*c* 0.44, MeOH), identified as cycloorbicoside D based on spectral data and comparison with an authentic sample [7–9].

PMR spectrum of cycloorbicoside D (400 MHz, C_5D_5N , δ , ppm, J/Hz, 0 = HMDS): 0.13 and 0.42 (d, ${}^2J = 4$, 2H-19), 0.88 (s, CH₃), 1.06 (d, ${}^3J = 6.6$, CH₃-21), 1.21, 1.24, 1.56, 1.60, 1.88 (s, 5 × CH₃), 3.52 (dd, ${}^3J_1 = 11.6$, ${}^3J_2 = 4.4$, H-3), 3.61 (dd, ${}^2J = 11.6$, ${}^3J = 10$, D-xylose H-5a), 3.64 (m, H-6), 3.64 (d, ${}^3J = 8.4$, H-24), 3.95 (dd, ${}^3J_1 = 8.8$, ${}^3J_2 = 7.2$, D-xylose H-2), 4.05 (t, ${}^3J_1 = {}^3J_2 = 8.8$, D-xylose H-3), 4.13 (m, D-xylose H-4), 4.21 (m, H-23), 4.25 (dd, ${}^2J = 11.2$, ${}^3J = 5.2$, D-xylose H-5e), 4.58 (td, ${}^3J_1 = {}^3J_2 = 7.3$, ${}^3J_3 = 4.7$, H-16), 4.79 (d, ${}^3J = 7.5$, D-xylose H-1). Table 1 lists the ${}^{13}C$ NMR spectrum of cycloorbicoside D.

23R,24R-Cycloartan- $3\beta,6\alpha,23,24,25$ -hexaol 23-O-[(β -D-Glucuronopyranosyl)(1 \rightarrow 2)- β -D-glucopyranoside] (4) from 1. Progenin 4, $C_{42}H_{70}O_{17}$, $[\alpha]_D^{28}$ -7.4 ± 2° (c 1.35, MeOH).

PMR spectrum of progenin **4** (500 MHz, C_5D_5N , δ , ppm, J/Hz, 0 = HMDS): 0.14 and 0.40 (d, ${}^2J = 4$, 2H-19), 0.82 (s, CH₃), 1.21 (d, ${}^3J = 6$, CH₃-21), 1.25, 1.28, 1.56, 1.57, 1.79 (s, 5 × CH₃), 3.55 (dd, ${}^3J_1 = 12$, ${}^3J_2 = 4$, H-3), 3.64 (td, ${}^3J_1 = {}^3J_2 = 9$, ${}^3J_3 = 3$, H-6), 4.56 (m, H-16), 4.75 (m, H-23), 5.51 (d, ${}^3J = 7$, D-glucuronic acid H-1). The resonance of D-glucose H-1 overlapped the H₂O resonance at δ 5.28. Table 1 lists the ${}^{13}C$ NMR spectrum of progenin **4**.

23R,24R-Cycloartan- $3\beta,6\alpha,23,24,25$ -hexaol $3-O-\beta$ -D-Xylopyranoside, $23-O-[\beta$ -D-(6-O-Me)-glucuro-nopyranosyl($1\rightarrow 2$)]- β -D-glucopyranoside (5) from 1. Progenin 5, $C_{48}H_{80}O_{21}$, $[\alpha]_D^{28}$ - $16.3 \pm 2^\circ$ (*c* 1.1, MeOH).

PMR spectrum of progenin **5** (500 MHz, C_5D_5N , δ , ppm, J/Hz, 0 = HMDS): 0.15 and 0.42 (d, ${}^{2}J = 4$, 2H-19), 0.88, 1.24 (s, 2 × CH₃), 1.25 (d, ${}^{3}J = 6.5$, CH₃-21), 1.27, 1.55, 1.59, 1.88 (s, 4 × CH₃), 3.53 (dd, ${}^{3}J_1 = 12$, ${}^{3}J_2 = 4$, H-3), 3.61 (m, D-xylose H-5a and H-6), 3.67 (s, CH₃O), 4.53 (m, H-16), 4.73 (m, H-23), 4.79 (d, ${}^{3}J = 7$, D-xylose H-1), 5.35 (d, ${}^{3}J = 7.5$, D-xylose H-1), 5.39 (d, ${}^{3}J = 7.5$, D-glucuronic acid H-1). Table 1 lists the ${}^{13}C$ NMR spectrum of progenin **5**.

Askendoside H (6) from 1. Glycoside 1 (74 mg) in H₂O (15 mL) was treated with several milligrams of β -D-glucuronidase. The solution was stirred, treated with benzene (1 drop), and left at 30°C for 37 d, after which the solution was evaporated to dryness. The dry solid was chromatographed over a column with elution by system 5 to isolate 6 (29 mg), C₄₆H₇₈O₁₉, which was identified as askendoside H [1] by direct comparison with an authentic sample and spectral data.

PMR spectrum of askendoside H (400 MHz, C_5D_5N , δ , ppm, J/Hz, 0 = HMDS): 0.12 and 0.45 (d, ²J = 4, 2H-19), 0.88 (s, CH₃), 1.15 (d, ³J = 6.4, CH₃-21), 1.28, 1.29, 1.51, 1.53, 1.84 (s, 5 × CH₃), 1.61 (d, ³J = 9, H-5), 4.80 (d, ³J = 7, D-xylose H-1), 5.01 (d, ³J = 7, 7, D-glucose H-1), 5.09 (d, ³J = 6.5, L-arabinose H-1). Table 1 lists the ¹³C NMR spectrum of askendoside H.

ACKNOWLEDGMENT

The work was supported financially by the Republic of Uzbekistan State Foundation for Basic Research (Grant FA-F3-T-044) and GNTP (Grant FA-A12-T-101).

REFERENCES

- 1. I. M. Isaev and M. I. Isaev, Khim. Prir. Soedin., 446 (2010).
- 2. M. I. Isaev, M. B. Gorovits, and N. K. Abubakirov, Khim. Prir. Soedin., 431 (1985).
- 3. M. I. Isaev, M. B. Gorovits, and N. K. Abubakirov, Khim. Prir. Soedin., 156 (1989).
- 4. R. P. Mamedova and M. I. Isaev, Khim. Prir. Soedin., 257 (2004).
- 5. V. I. Lutskii, A. S. Gromova, E. A. Khamidullina, and N. L. Owen, *Khim. Prir. Soedin.*, 97 (2005).
- 6. R. P. Mamedova, M. A. Agzamova, and M. I. Isaev, *Khim. Prir. Soedin.*, 384 (2003).
- 7. I. M. Isaev, R. P. Mamedova, M. A. Agzamova, and M. I. Isaev, Khim. Prir. Soedin., 95 (2007).
- 8. R. P. Mamedova, M. A. Agzamova, and M. I. Isaev, Khim. Prir. Soedin., 345 (2005).
- 9. R. P. Mamedova, M. A. Agzamova, K. K. Turgunov, A. Tozhiboev, B. Tashkhodzhaev, and M. I. Isaev, *Khim. Prir. Soedin.*, 400 (2006).
- 10. M. I. Isaev, B. A. Imomnazarov, Yu. M. Fadeev, and P. K. Kintya, *Khim. Prir. Soedin.*, 360 (1992).
- 11. H. K. Wang, K. He, L. Ji, Y. Tezuka, T. Kikuchi, and I. Kitagawa, Chem. Pharm. Bull., 37, 2041 (1989).
- 12. R. P. Mamedova, M. A. Agzamova, and M. I. Isaev, *Khim. Prir. Soedin.*, 453 (2001).
- 13. M. I. Isaev, M. B. Gorovits, N. D. Abdullaev, and N. K. Abubakirov, *Khim. Prir. Soedin.*, 458 (1982).
- 14. M. I. Isaev, Khim. Prir. Soedin., 820 (1995).
- 15. M. I. Isaev, Khim. Prir. Soedin., 723 (1996).